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Abstract
Non-mutually exclusive interventions are common features of programs implemented

in developing and developed countries. Evaluating the impact of individual and joint
participation in these programs may be of policy interest in guiding the cost-effective
allocation of resources. However, program participation is substantially misreported
in survey data, which may result in biased treatment effect estimates. While the lit-
erature has focused on misreporting in one program, our study proposes a method to
consistently estimate individual and joint treatment effects of potentially misreported
overlapping (and exogenous) programs. We focus on false negative cases which are
more prevalent in observational studies. We derive the bias in the traditional ordinary
least squares (OLS) estimator and show that it is not possible to determine the direc-
tion of the bias a priori. The joint treatment effect may also have an opposite sign
to the true effect, which may have dramatic consequences if used to inform policy on
whether the programs are complements or substitutes. As in the previous literature,
we argue that any instrumental variable (IV) that meets relevant criteria fails to ad-
here to the exclusion restrictions, resulting in biased IV estimates. We then develop a
consistent estimator of treatment effects using misclassification probabilities, available
through validation studies and other external sources. When misclassification probabil-
ities are unknown, we provide an approach to estimate and apply them in the proposed
method. Monte Carlo simulations show that the estimator performs well in finite sam-
ples. Finally, we provide an empirical example, estimating the effect of two correlated
and documented to be substantially misreported programs, the Supplemental Nutri-
tion Assistance Program (SNAP) and the Special Supplemental Nutrition Program for
Women, Infants, and Children (WIC), on food security and healthy eating.
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1 Introduction

This paper focuses on estimating individual and joint treatment effects in parametric re-

gressions in the presence of non-mutually exclusive interventions and misreporting. Non-

mutually exclusive interventions are a common feature of programs implemented in most

countries. For instance, the U.S. Department of Agriculture (USDA) administers 15 do-

mestic food assistance programs to eligible low-income households (Oliveira, 2018). These

programs vary in terms of their sizes, benefits, and population targets, and low-income house-

holds may be eligible to participate in multiple programs. We can find similar overlapping

programs in developing countries, such as Conditional Cash Transfers (CCTs) and Insecticide

Treated Nets (ITNs) distribution programs. The CCTs require recipients to meet established

criteria, including children’s school attendance, up-to-date vaccinations, and regular health

care visits, which may influence household’s chances of receiving free or subsidized ITNs

channeled through schools and antenatal Clinics (Fiszbein, 2009; Scates et al., 2020).

Estimating individual and joint treatment effects of overlapping programs may interest

researchers and policymakers. First, participating in one program may increase individuals’

awareness of other available programs, affecting their probability of participating in these

programs. The transactional cost of participating in a program may also change conditional

on participation in other programs, which may encourage uptake. For example, automatic or

categorical eligibility allows households to be automatically eligible for a program without

going through eligibility determination conditional on receiving other programs. Second,

understanding whether parallel treatments are complements or substitutes is critical for

the optimal combination of interventions and cost-effective allocation of resources. If two

programs are complements, there are additional gains from implementing both programs

relative to each, incentivizing the parallel implementation of the programs. In contrast, if

the two programs are substitutes, the gains from implementing both are less than the sum of

benefits from implementing either. The optimal policy, in this case, might be to implement

one of the programs but not both.

However, participation in social programs is substantially misreported in survey data.

False negatives occur when program participants report not receiving treatment when they
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did, and false positives when program nonparticipants report receiving treatment when they

didn’t. In this paper, we focus on false negatives, which are more prevalent in social programs

in observational studies. For instance, Meyer et al. (2022) report up to 48.98%, 33.08%,

and 22.82% rates of false negatives in Supplemental Nutrition Assistance Program (SNAP)

participation in the Current Population Survey (CPS), the American Community Survey

(ACS), and the Survey of Income and Program Participation (SIPP), while false positive is

typically low, 0.73%, 0.84%, and 1.64%. While other error sources, such as recall, salience,

and design of survey instruments, may result in either false negatives or positives, stigma

or social image concern is likely to drive the high prevalence of underreporting in social

programs (Celhay et al., 2022). Note that underreporting in surveys is not restricted to

social program participation. Stigma-related misclassifications extend to other behaviors

perceived as socially undesirable. For example, in health literature, social stigma may reduce

the probability that a mother reports prenatal smoking in surveys (Brachet, 2008; Fertig,

2010).

Identification and estimation with single misclassified binary regressors have been ex-

tensively studied in different settings such as exogenous misreporting and treatment (e.g.,

Aigner 1973, Bollinger 1996, Black et al. 2000, Lewbel 2007, Chen et al. 2008b, Chen et al.

2008a, van Hasselt & Bollinger 2012, Nguimkeu et al. 2021), exogenous misreporting and

endogenous treatment selection (e.g., Kane et al. 1999, Frazis & Loewenstein 2003, Brachet

2008, DiTraglia & Garćıa-Jimeno 2017, Bollinger & van Hasselt 2017, Ura 2018) and endoge-

nous misreporting and treatment selection (e.g., Kreider et al. 2012, Hu et al. 2015, Hu et

al. 2016, Nguimkeu et al. 2019). These studies have offered various approaches to recovering

consistent treatment effect point estimates and, in some cases, parameter bounds. Some

solutions involve adjusting OLS using knowledge of misclassification probabilities or esti-

mating them in the data given the distribution assumptions (e.g., Aigner 1973, Nguimkeu et

al. 2021). Other studies use instrumental variables (e.g., Black et al. 2000, Frazis & Loewen-

stein 2003, Mahajan 2006, Ura 2018, DiTraglia & Garćıa-Jimeno 2017, Ura 2018, Nguimkeu

et al. 2019), and repeated measurements (e.g., Kane et al. 1999, Black et al. 2000, Chen

et al. 2008b, van Hasselt & Bollinger 2012) , while others estimate parameter bounds (e.g.,

Bollinger 1996, Black et al. 2000).
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Much less is known about estimation with overlapping and potentially misclassified binary

regressors. Our study is related to Jensen et al. (2019), examining whether joint participation

in Supplemental Nutrition Assistance Program (SNAP) and the Special Supplemental Nu-

trition Program for Women, Infants, and Children (WIC) increases food security compared

to participating in only SNAP. However, the study assumes household true participation

status in one program, SNAP, is observed using auxiliary administrative data to validate

the self-reported status. In contrast, the second program, WIC, is potentially misreported,

whereas we allow both programs to be underreported. In addition, the study identifies ATE

bounds under the assumption that the better food security outcome of the household is

weakly increasing with household expenditure on food at home compared to total spending.

Though this assumption is plausible, it seems relatively strong. The share of food expen-

diture to total spending may increase as households become poorer or as household size

increase for a given income which may not necessarily translate to favorable food security

outcome. Moreover, this study does not produce point estimates which could be of interest

in policy. Garber & Klepper (1980) attempts to show bias in multiple mismeasured contin-

uous regressors and show that at least one coefficient estimate will be attenuated. Little is

known about our setting when measurement errors, non-classical in nature, occur in multiple

binary regressors.

This paper proposes a solution to consistently estimate individual and joint treatment

effects in a multivariate linear regression when binary regressors representing correlated and

non-mutually exclusive interventions are plausibly mismeasured. We first derive the asymp-

totic bias in the naive OLS estimator and show that it is not possible to determine the

direction of the bias a priori. We further show that OLS estimates of the joint treatment

effect of the two mismeasured binary regressors can have an opposite sign to the true effect.

In addition, any valid instrument will also be correlated with the measurement errors, failing

to meet relevance criteria, resulting in biased treatment effects estimates. Our approach to

correct for OLS bias uses known misreporting probabilities to express the correlation between

true (unobserved) binary regressors and observed covariates as a function of observed covari-

ates and misreporting probabilities. When the misclassification probabilities are unknown,

we extend the maximum likelihood estimator of Hausman et al. (1998) to bivariate models
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and estimate them given the data. Estimated misclassification probabilities and treatment

effects are consistent, given the correct distribution assumption of the true binary regressors.

We then assess the finite sample performance of the proposed estimators in Monte Carlo sim-

ulations and show that the proposed estimator is superior to naive OLS. Finally, we provide

an empirical example. We examine the impact of SNAP and WIC on food security and

Healthy Eating Index (HEI) using the National Household Food Acquisition and Purchase

Survey (FoodAPS) data.

The rest of the paper proceeds as follows. Section 2 reviews the literature on measure-

ment errors in binary regressors. Section 3 describes our framework, a multivariate linear

regression model with two correlated misclassified binary regressors and their interaction,

and assesses the bias of the OLS estimator. Section 4 develops our proposed estimators

when misclassification probabilities are available to researchers and when they are unknown.

Section 5 provides Monte Carlo simulations. We present an empirical example in Section 6

and summarize our findings in Section 7. Mathematical proofs are in the appendix.

2 Literature Review

Literature on measurement errors in binary regressors mainly focuses on identification and

estimation with single misclassified binary regressors under different assumptions regard-

ing misreporting and treatment selection. A group of studies examine when misreporting

and participation happen exogenously (Aigner, 1973; Bollinger, 1996; Black et al., 2000;

Lewbel, 2007; Chen et al., 2008b,a; van Hasselt & Bollinger, 2012; Nguimkeu et al., 2021).

Aigner (1973) is the first study to examine misclassification in binary regressors. The study

demonstrates the attenuation bias in the OLS estimator and proposes an estimator to com-

pute treatment effects using misclassification probabilities. Black et al. (2000) provide par-

tial identification bounds in linear regressions such that the true value of the parameter is

bounded between the OLS estimator, which can be improved further if two noisy measures

exist, and the instrumental variable (IV) estimator. Nguimkeu et al. (2021), estimate lin-

ear regression models with misclassified binary regressor, potentially correlated with other

regressors resulting in hidden bias. The study provides a way to consistently obtain treat-
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ment effects using misclassification probabilities in a bias-adjusted least-squares estimator

(BALS). Lewbel (2007) uses an instrument for participation in nonparametric and semi-

parametric regressions. Other studies take a partial identification approach and provide

parameter bounds under a weak set of assumptions in linear regression models (Bollinger,

1996; van Hasselt & Bollinger, 2012), and others examine identification in nonparametric

regression models (Chen et al., 2008b,a).

A related group of studies examine the case with exogenous misreporting but participa-

tion or treatment selection is endogenous (Kane et al., 1999; Frazis & Loewenstein, 2003;

Brachet, 2008; DiTraglia & Garćıa-Jimeno, 2017; Bollinger & van Hasselt, 2017; Ura, 2018).

Kane et al. (1999) propose a generalized method of moment (GMM) to simultaneously iden-

tify misreporting errors and parameters of interest when repeated measures are available.

Brachet (2008) uses a two-step GMM procedure, estimating the probability of true status

in the first stage by maximum likelihood and using the predicted probabilities to recover

consistent estimates in the second stage. Mahajan (2006) provides nonparametric point esti-

mates of homogenous average treatment effects using additional information or “instrument-

like variable”. Frazis & Loewenstein (2003) provide homogenous average treatment effects

bounds using IV and GMM. Ura (2018) provides finite bounds of local heterogenous treat-

ment effects in a nonparametric setting using IV. DiTraglia & Garćıa-Jimeno (2017) considers

identification when a discrete-valued instrument is available. Bollinger & van Hasselt (2017)

propose a Bayesian approach to identify parameter bounds.

Other studies provide solutions when a single misclassified and endogenous binary re-

gressor is endogenously misreported. Kreider et al. (2012) shows the effect of SNAP on

health outcomes by estimating average treatment effects bounds under increasingly stronger

but plausible nonparametric assumptions. Hu et al. (2015) uses a local polynomial regres-

sion estimator to identify parameters in single-index models. Hu et al. (2016) examines a

class of nonseparable index models with measurement errors and endogeneity. Nguimkeu

et al. (2019) considers underreporting cases and shows that regardless of whether partic-

ipation is endogenous, endogenous misreporting results in inconsistent OLS (may lead to

sign switching) and IV estimators. The study proposes a two-step estimator that estimates

the probability of true participation status in the first stage using information regarding
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participation and misreporting and identifies treatment effects in the second stage using the

predicted participation status from the first stage.

Literature on regression frameworks with multiple misclassified binary regressors is scanty.

Jensen et al. (2019) identify ATE bounds on whether joint SNAP and WIC participation

reduces food insecurity compared with participating in only SNAP using a nonparametric

approach. One limitation of this study is that it does not yield point estimates that could

be relevant to policymakers. Additionally, it considers only one program, WIC, to be mis-

reported, and true SNAP participation status is observed in the data. Moreover, the study

imposes behavioral assumptions on the relationship between outcome, program participation,

and other covariates. Other studies consider the case when continuous multiple variables are

measured with errors (e.g., Garber & Klepper 1980). However, these theoretical conclusions

may not necessarily extend to measurement errors in multiple binary regressors, considering

the non-classical nature of misclassifications in binary regressors. Unlike Savoca (2000), we

consider joint treatment effects and exploit the case when misclassification probabilities are

unknown.

Our paper has two salient contributions. First, we propose a consistent estimator of

treatment effects of overlapping and plausibly misreported programs when information about

misclassification probabilities is available, for example, through validation studies or other

relevant sources. Second, when information about misclassification probabilities is unavail-

able, we propose a framework to estimate them from the data. We also show the finite

sample performance of our proposed solutions and provide an empirical example.

3 Framework

This section describes our regression framework and discusses the bias of the OLS estimator

due to misreporting.

3.1 Model with overlapping treatments and misreporting

Our regression framework considers a multiple linear regression model with a scalar outcome,

yi, correlated and exogenous (true) participation indicators, t∗1i and t∗2i such that Pr[t∗1i =
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1] = P ∗1 and Pr[t∗2i = 1] = P ∗2 with P ∗1 ∈ (0, 1) and P ∗2 ∈ (0, 1), and a k × 1 vector of

exogenous error-free covariates, xi for each observation i in random sample size, n. The

relationship between these entities is given by

yi = α1t
∗
1i + α2t

∗
2i + α3t

∗
1i × t∗2i + x′iβ + εi (1)

Here, α1 is the conditional average treatment effect of t∗1i for subjects that are not partic-

ipating in t∗2i, and α2 is the conditional average treatment effects of t∗2i for subjects that are

not participating in t∗1i. The parameter α3 captures the additional effect for participating in

both t∗1i and t∗1i compared to just participating in one of them.

We assume the two true binary regressors of interest, t∗1i and t∗2i are correlated with

Cor(t∗1i, t
∗
2i) = ρ. When ρ > 0, individuals who participate in one program are likely to

also participate in the other program, for instance, as they become categorically eligible or

more aware of other programs. However, if there are additional (explicit or implicit) costs or

disincentives associated with participating in the other programs given participation in the

first one, we expect ρ < 0. When ρ = 0, participation in these programs are independent to

one another.

In the treatment effect literature, the interaction term captures the effect of one program

that is influenced by participation status in the other program. In other words, it reflects

cases when participation in two programs has a larger effect than the sum of effects of individ-

ual programs alone. When the interaction term is omitted or when α3 = 0, the specification

imposes an additive assumption indicating that the effect of t∗1i on yi is independent of the

effect of t∗2i, and vice versa. Note that t∗1i and t∗2i could be independent to each other but

still have dependent effects on the outcome yi.

We aim to consistently estimate the model parameters, θ = [α1, α2, α3, β]′. We are par-

ticularly interested in α3, the key parameter capturing the additional effect of participating

in both programs relative to either, which we term the ‘joint effect’.

Assumption 1. E [εi|t∗1i, t∗2i, xi] = 0

We assume that (true) program participation status, t∗1i and t∗2i, and other covariates, xi,

in the treatment effect model are orthogonal to the error term εi. Thus, the error term does
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not have any predictive power on our outcome of interest, yi, conditional on covariates and

correct model specification. This assumption is standard in linear regression models.

Assumption 2. Var(xi) exists and is nonsingular (and finite).

This assumption is the typical identification condition in treatment effect models. It

requires a matrix X = [x′1, x
′
2, . . . , x

′
n]′, to have a full rank, k, ruling out perfect multi-

collinearity among the covariates in X. Additionally, we assume that covariates follow a

well-behaved distribution with finite moments, thereby eliminating extreme cases. Under

Assumption (1) and (2), OLS estimator of the model parameters, (α1, α2, α3, β), is unbi-

ased and consistent. In particular, the probability limit of our coefficient of interest is equal

to the true value, plim α̂3LS = α3 and we can make correct policy prescriptions based on

whether the two programs are complements or substitutes.

However, the econometrician does not observe the true participation status (t∗1i, t
∗
2i), but

plausibly error-driven proxies, t1i and t2i, such that Pr[tji = 1] = Pj with Pj ∈ (0, 1).

We model misreporting in the observed participation status using two unobserved binary

indicators, δ1i and δ2i. Each of these misreporting (or reporting) indicators is such that a

respondent correctly reports their treatment status if the indicator takes the value 1, and

reports not receiving treatment otherwise.

Assumption 3. The observed (error-ridden) binary regressors, (t1i, t2i), are functions of

the true (unobserved) binary regressors and the misreporting indicators, (δ1i, δ2i), such that

t1i = t∗1iδ1i and t2i = t∗2iδ2i

This specification reflects a one-sided misreporting case commonly encountered in social

programs especially those associated with stigma (such as SNAP and WIC), in risky be-

havior (such as smoking and drunk driving), and other types of responses that are prone to

social desirability bias. In this case, the observed program participants truly received the

treatment, but some of the observed nonparticipants also received treatment but reported

no receipt, representing the false negatives. For the SNAP and WIC programs that we use in

our applications, validation studies show that the prevalence of false negatives are substan-

tial in survey data while false positives are negligible, consistent with Assumption 3 (e.g.,
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Meyer et al. 2022). This measurement error framework resembles the partial observability

model in Poirier (1980) where each of the observed binary regressors is determined jointly

by the true underlying binary regressors and measurement error indicator, and it has been

previously used in the measurement error literature (e.g., see Nguimkeu et al. 2019). Note

that measurement errors in binary regressors are necessarily negatively correlated with true

participation status (Aigner, 1973).

We allow misreporting to depend on covariates only through the true participation status.

This implies that conditional on true participation status, the probability of misreporting in

both programs is exogenous, hence constant and uncorrelated with εi. Specifically, we define

misreporting probabilities as

Assumption 4.

Pr(t1i = 0|t∗1i = 1, t2i, xi) = a1 and Pr(t2i = 0|t∗2i = 1, t1i, xi) = a2, a1, a2 ∈ [0, 1). (2)

This assumption introduces misclassification probabilities, a1 and a2, the probability

of false negatives in t1 and t2, respectively. The assumption of constant misclassification

probabilities is common in the literature of mismeasured binary regressors (e.g., see Bollinger

1996, Kane et al. 1999, Hausman et al. 1998, Black et al. 2000, Frazis & Loewenstein 2003,

Brachet 2008, van Hasselt & Bollinger 2012, Bollinger & van Hasselt 2017, DiTraglia &

Garćıa-Jimeno 2017, Nguimkeu et al. 2021). We further assume that aj ∈ [0, 1), ruling out

severe cases of misreporting where the observed error-driven proxies are no longer informative

of the true treatment status. In other words, the misclassification errors do not overwhelm

their ability to signal true status, equivalent to saying that Cov(tji, t
∗
ji) ≥ 0, and tji is better

proxy of t∗ji compare to 1 − t1i or a random guess. Hausman et al. (1998) termed this

assumption the “Monotonicity condition.”

The econometrician does not observe the data-generating process and estimates a model

equivalent to that specified in Equation (1), referred to as the operation model, using ob-

served treatment status contaminated by misreporting errors and other error-free covariates,

given by:
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yi = α1t1i + α2t2i + α3t1i × t2i + x′iβ + εi (3)

Naive OLS estimator of the parameters in Equation 3 are asymptotically biased given

the measurement errors in the regressors. Moreover, the misreporting errors in the two

binary regressors contaminate the interaction term, which imposes additional complications

in estimating the model parameters.

3.2 Bias of treatment effects due to misreporting

We first derive the bias in a naive OLS estimator of the treatment effects. We next show the

joint treatment effects estimates may attain a sign opposite of the true treatment effect. To

do this, we express our covariates in vector and matrix forms and define Z∗ = [t∗1, t
∗
2, t
∗
3, x]

and Z = [t1, t2, t3, x] where t∗3i = t∗1i × t∗2i and t3i = t∗3i × δ3i, with δ3i = δ1i × δ2i. The

following result follows.

Lemma 1. Under Assumptions 1-2, the probability limit of the OLS estimator of the model

parameters, θ = [α1, α2, α3, β]′, is given by

plim θ̂LS = [Var(Z)]−1Cov(Z,Z∗)θ

Proof. See Appendix A.1.

A naive OLS estimator is biased and inconsistent because Var(Z)] 6= Cov(Z,Z∗), unless

there is no misreporting. To see this, consider the components of Var(Z) and Cov(Z,Z∗)

featured in Lemma 1. First, Cov(tji, t
∗
ji) 6= Var(tji), for j ∈ {1, 2, 3} since the misreporting

error in binary regressors is necessarily negatively correlated with true participation status,

Cov(tj1, t
∗
j1 − tj1) 6= 0. Second, misreporting errors are necessarily correlated with other

regressors in the model if the true (unobserved) binary regressor is correlated with those

regressors (Nguimkeu et al., 2021). We also derive this result in our framework and show

that Cov(xi, t
∗
ji) 6= Cov(xi, tji) as long as Cov(xi, t

∗
ji) 6= 0. Other terms in Lemma 1 are

driven by the correlation between the two binary regressors t1i and t2i, and their correlation

with the interaction term, t3i. Since ρ∗ 6= 0, it follows that Cov(tki, t
∗
ji) 6= Cov(tki, tji), for
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k ∈ {1, 2, 3} and k 6= j. In contrast, when there is no misreporting, t∗ji = tji and Z∗ = Z,

and the OLS estimator is unbiased and consistent.

In particular, under Assumptions 1-2, the asymptotic bias in the OLS estimator of the

joint effect, α3LS, is

plim α̂3LS − α3 =
A−Bα3

Q

Where A = E
[
t3iz

′∗
i,−t3iθ−α3

]
− E

[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
i,−t3i

])−1 E
[
zi,−t3iz

∗
i,−t3iθ−α3

]
,

B = E
[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
i,−t3i

])−1 E [zi,−t3i (t∗3i − t3i)],

Q = E [t3i]− E
[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
−3i

])−1 E [zi,−t3it3i],

θ−α3 = [α1, α2, β]′, and zi,−t3i = [t1i; t2i;xi]

Proof. See Appendix A.1.

A 6= 0 and B 6= 0, if there is misreporting in at least one binary regressor, and Q, is

always positive by Cauchy-Schwarz inequality. Therefore, the direction of the bias is driven

by A and B, and we would overestimate the joint treatment effect, an expansion bias when

B > 0 and α3 < A/B or B < 0 and α3 > A/B. On the other hand, we will underestimate

the joint treatment effect when B > 0 and α3 > A/B or B < 0 and α3 < A/B. Thus,

the direction of the bias cannot be determined a priori. Garber & Klepper (1980) reached

a similar theoretical conclusion with multiple mismeasured continuous covariates where the

study shows that their coefficients are not necessarily attenuated, but at least one of them

is.

A naive OLS estimator of the joint treatment effect may also result in sign reversal. For

example, with complement treatments, α3 > 0. However, when A > 0 and B − Q > 0,

plim α3 will always be negative. In a different setup, when A < 0 and B − Q < 0, plim α3

will be negative when 0 < α3 < A/(B − Q). Without losing generality, noting that sign

switching regions when α3 < 0 simply mirror those when α3 > 0, we only present the sign-

switching regions when α3 > 0 in Figure 1. When there is no misreporting, A = 0 and

B = 0, naive OLS estimator is unbiased, and we have plim α̂3 = α3.
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4 The proposed estimator

We propose an estimator that uses misclassification probabilities to correct for the OLS bias

and attain consistent treatment effects. We first assume that econometricians or researchers

have access to information regarding the misclassification probabilities. We also develop a

procedure to estimate misclassification probabilities given the data and distributional as-

sumptions about the true binary regressors.

4.1 Known misclassification probabilities

By inverting the relationship in Lemma 1, a consistent estimator of the model parameters

can be obtained by defining an adjusted least squares estimator given by

θ̂Adj = Ĉov(Z,Z∗)−1V̂ar(Z)θ̂LS. (4)

While V̂ar(Z) can be obtained from the sample, Ĉov(Z,Z∗) on the other hand, the co-

variance between the observed regressors and their true (unobserved) counterparts, contains

components that are not directly observed in the data. Our proposed estimator uses the

assumptions made above for this framework to estimate Ĉov(Z,Z∗) from the data by ex-

pressing this quantity as a function of misclassification probabilities and sample statistics

that can be computed from the data. This is provided by the following lemma.

Lemma 2. Under Assumptions 1-2,

Cov(t2i, t
∗
1i) = ζ1Cov(t2i, t1i), Cov(t3i, t

∗
1i) = ζ1Cov(t1i, t2i), Cov(xi, t

∗
1i) = ζ1Cov(xi, t1i),

Cov(t3i, t
∗
2i) = ζ2Cov(t2i, t1i), Cov(t1i, t

∗
2i) = ζ2Cov(t1i, t2i), Cov(xi, t

∗
2i) = ζ2Cov(xi, t2i)

Cov(t1i, t
∗
1i) = η1Var(t1i) Cov(t2i, t

∗
2i) = η2Var(t2i)

Cov(t1i, t
∗
3i) = ζ2η1iCov(t1i, t3i), Cov(t2i, t

∗
3i) = ζ1η2Cov(t2i, t3i),

Cov(xi, t
∗
3i) = ζ3Cov(xi, t3i), Cov(t3i, t

∗
3i) = η3Var(t3i)

Where

ζ1 =
1

1− a1

, ζ2 =
1

1− a2

, ζ3 =
1

1− a3

,

η1 =
1− a1 − P1

(1− a1)(1− P1)
η2 =

1− a2 − P2

(1− a2)(1− P2)
η3 =

1− a3 − P3

(1− a3)(1− P3)
,

a3 = Pr(t3i = 0|xi, t∗3i = 1) P3 = Pr(t3i = 1)
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Using Lemma 2, we now have an estimator of Ĉov(Z,Z∗) from the data, which we

denote Ŵ (a1, a2) to express its dependency to misclassification probabilities only, and we can

formally present our proposed estimator of the parameters in the model given by Equation

3. The following result follows if we denote the sample covariance between ri and si by σrs

and variance of ri by σ2
r . Specifically, σrs =

1

n

∑n
i=1(ri − r̄)(si − s̄)′ and σ2

r =
1

n

∑n
i=1(ri −

r̄)(ri − r̄)′where r̄ and s̄ are the sample mean of ri and si.

Theorem 1. Under Assumptions 1-2, for given misclassification probabilities, a1 and a2,

the adjusted least squares estimator is given by


α̂1Adj

α̂2Adj

α̂3Adj

β̂Adj

 =


η1σ

2
t1

ζ2σt1t2 η1ζ2σt1t3 σt1x

ζ1σt2t1 η2σ
2
t2

η2ζ1σt2t3 σt2x

η1σt3t1 η2σt3t2 η3σ
2
t3

σt3x

ζ1σxt1 ζ2σxt2 ζ3σxt3 σ2
x



−1 
σyt1

σyt2

σyt3

σyx


Where ζj and ηj for j ∈ {1, 2, 3} are as defined in Lemma 2. It follows that:

(i) These estimators are consistent, that is, θ̂Adj
p−→ θ, with θ = [α1, α2, α3, β]′

When there is no misreporting, ηj = 1 and ζj = 1, our estimator in Theorem 1 is

quantitively similar to the OLS, and both are consistent. We can also see this by expressing

the adjusted least squares estimator as θ̂Adj = Ŵ (a1, a2)−1V̂ar(Z)θ̂LS. When there is no

misreporting, i.e. a1 = a2 = 0, then Ŵ (0, 0) = V̂ar(Z) and θ̂Adj = θ̂LS. When there is

misclassification in at least one treatment status, solutions proposed for single misclassified

regressors (e.g., modified least square estimator in Aigner (1973) and bias-adjusted least

square in Nguimkeu et al. (2021)) do not account for the bias driven by misreporting in the

second binary regressor. In contrast, the proposed estimator, the adjusted least squares, is

consistent when misreporting exists in any or all binary regressors.

The variance of the proposed estimator can be estimated through bootstrapping tech-

niques. Unless the researcher knows or makes assumptions on the distribution of εi, we

suggest to use a non-parametric bootstrap procedure that jointly samples the outcome, yi,

program participation status (t1i, t2i), and a vector of other covariates, xi.
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In our setting, the bootstrap procedure to estimate the covariance of our consistent

estimator would involve M replications, samples nm observations with replacement in each

replication, m, and compute coefficient estimates using the adjusted least squares, θ̂m,Adj

with each sample. Let
¯̂
θM,Adj = 1

M

∑M
m=1

[
θ̂m,Adj

]
, the average of the bootstrapped estimates

of θ, the estimated asymptotic covariance matrix of the adjusted least squares estimator,

θ̂Adj, follows as

V̂ar
[
θ̂Adj

]
=

1

M − 1

M∑
m=1

[
θ̂m,Adj − ¯̂

θM,Adj

] [
θ̂m,Adj − ¯̂

θM,Adj

]′
4.2 Estimation of misclassification probabilities

Our estimator so far uses known misreporting probabilities, a1 and a2, to estimate the

treatment effects of interest. Hence, applying the proposed estimator in correcting the bias

due to measurement error may be limited in the context where misclassification probabilities

are unknown. One way of addressing this limitation is by estimating the misclassification

probabilities in the data in the first step, â1 and â2, and using them in the proposed adjusted

least squares estimator in the second step, θ̂Adj = Ŵ (â1, â2)−1V̂ar(Z)θ̂LS.

The existing literature has taken this approach mainly in the context of single misre-

ported binary regressors (e.g., Brachet 2008; Nguimkeu et al. 2021) and use the framework

of estimating misclassification probabilities proposed by Hausman et al. (1998).

We can also extend the approach in Hausman et al. (1998) to a bivariate or multivariate

framework to fit the context of multiple misclassified binary regressors. We model (true)

binary regressors as

t∗1i = 1(x′iγ1 + u1i > 0)

t∗2i = 1(x′iγ2 + u2i > 0)
(5)

and their interaction as

t∗3i = 1(x′iγ1 + u1i > 0, x′iγ2 + u2i > 0) (6)

We assume that the joint Cumulative Distribution Function (CDF) of (−u1i,−u2i) is
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known and defined by F (x′iγ1, x
′
iγ2, ρ

∗) = Pr [−u1i ≤ x′iγ1,−u2i ≤ x′iγ2]. In particular, if

we assume that conditional on xi, the disturbance terms (u1, u2) are drawn from bivariate

normal distribution given by(
u1i

u2i

)
∼ N

((
0

0

)
,

(
1 ρ∗

ρ∗ 1

))
, (7)

their joint CDF would then be

Pr [−u1i ≤ x′iγ1,−u2i ≤ x′iγ2] = Φ2(x′iγ1, x
′
iγ2; ρ∗),

where Φ2(·, ·, ρ∗) is the bivariate standard normal CDF associated with correlation coefficient

ρ∗.
For given misclassification probabilities (a1, a2), the marginal likelihood of observed bi-

nary regressors, t1i and t2i, are given by

Pr [t1i = 1|xi] = (1− a1)Φ(x′iγ1)

Pr [t2i = 1|xi] = (1− a2)Φ(x′iγ2)
(8)

and their joint probability can be obtained by

Pr [t1i = 1, t2i = 1|xi] = (1− a1 − a2 + a1 × a2)Φ2(x′iγ1, x
′
iγ2, ρ

∗), (9)

where Φ(·) is the univariate standard normal CDF and Θ = (a1, a2, γ1, γ2, ρ) are vectors

of unknown parameters. These unknown parameters can be estimated jointly through max-

imum likelihood method. The maximum likelihood estimators of Θ, denoted by Θ̂, can be

obtained by maximizing the log-likelihood function given by

L(Θ) =
1

n

n∑
i=1

{t1it2i lnωi11(Θ) + t1i (1− t2i) lnωi10(Θ)

+ (1− t1i)t2i lnωi01(Θ) + (1− t1i)(1− t2i) lnωi00(Θ)} (10)

Where ωi11 = Pr (t1i = 1, t2i = 1), ωi10 = Pr (t1i = 1, t2i = 0), ωi01 = Pr (t1i = 0, t2i = 1),

and ωi00 = Pr (t1i = 0, t2i = 0) are probabilities responding to the four possible realizations
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of t1 and t2, defined as

ωi11 (Θ) = (1− a1 − a2 + a1 × a2) Φ2 (x′iγ1, x
′
iγ2; ρ∗)

ωi10 (Θ) = (1− a1) Φ (x′iγ1)− (1− a1 − a2 + a1 × a2) Φ2 (x′iγ1, x
′
iγ2; ρ∗)

ωi01 (Θ) = (1− a2) Φ (x′iγ2)− (1− a1 − a2 + a1 × a2) Φ2 (x′iγ1, x
′
iγ2; ρ∗)

ωi00 (Θ) = 1− (1− a1) Φ (x′iγ1)− (1− a2) Φ (x′iγ2) +

(1− a1 − a2 + a1 × a2) Φ2 (x′iγ1, x
′
iγ2; ρ∗)

The maximum likelihood estimators, Θ̂, which includes estimators of misclassification

probabilities, â1 and â2 can be obtained by maximizing likelihood function given by Equation

10 with respect Θ. Standard errors can be obtained, as usual, by computing the inverse of

the observed information matrix. Given the model assumptions and correct specification of

the cumulative distribution function, these maximum likelihood estimators are consistent.

4.3 Average marginal effects

Researchers and policymakers are often interested in the effect of participating in one pro-

gram relative to not participating, that is, the average marginal effect of treatment 1 or 2.

In our setting, as specified in Equation 1, the average marginal effects are given by

AMEj = Et∗3−j

[
∂E[yi|t∗1i, t∗2i, xi]

∂t∗j

]
= Et∗3−j

[
αj + α3t

∗
(3−j)i

]
= αj+α3

E
[
t(3−j)i

]
1− a3−j

for j ∈ {1, 2}

(11)

We can recover consistent estimates of the average marginal effects by using the ad-

justed least squares estimator to obtain coefficient estimates in the treatment effect model,

(α̂1Adj, α̂2Adj, α̂3Adj) and the misclassification probabilities which may be available through

validation datasets or estimated using the framework described in Section 4.2. Specifically,

the estimation of average marginal effects, ÂME, follows as

ÂMEj = Et̂∗3−j

[
∂E[yi|t̂∗1i, t̂∗2i, xi]

∂t̂∗j

]
= α̂j,Adj +

α̂3,Adj

1− ã3−j
t̄3−j for j ∈ {1, 2}

where t̄3−j = 1
n

∑n
i=1 t̂(3−j)i,Adj and ã3−j = a3−j or ã3−j = â3−j depending on whether the
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misreporting rates are known or not. By applying the delta method, we can in turn estimate

the asymptotic variance of the average marginal effects as

V̂ar(ÂMEj) = ΠjV̂ar[θ̂Adj]Π
′
j for j ∈ {1, 2}

where Πj = [1 0
t̄3−j

1−a3−j
0k×1], a (k+ 3)× 1 vector obtained from

∂ÂMEj

∂θ̂Adj
. This approach

provides us with standard errors and confidence interval required in making inference on the

average marginal effects.

4.4 Generalization to multivariate binary variables

Our proposed estimator can be extended to estimate individual and joint treatment effects

of multiple and plausibly misreported binary variables. This framework is useful in the

context of multiple programs where policymakers may be interested in understanding the

joint effect of a pair of programs on outcomes of interest. Suppose the researcher is inter-

ested in evaluating the impact of p programs and considers potential pairwise interactions.

There would be p(p−1)
2

such interactions terms which can be denoted tI1, . . . , tI p(p−1)
2

. The

adjusted least square estimator of the p(p+1)
2

+ k model parameters in this case, θ̂Adj =

(α̂1Adj, . . . , α̂pAdj, α̂I1Adj, . . . , α̂I p(p−1)
2

Adj
, β̂Adj) is given by

ˆ̂
θAdj = Ŵ (a1, . . . , ap)

−1V̂ar(Z)θ̂LS,

such that Ŵ (a1, . . . , ap) = Ĉov(Z,Z∗), and Z = (t1, . . . , tp, tI1, . . . , tI p(p−1)
2

, x). Here, the

terms in Ŵ (a1, . . . , ap) are obtained as for the binary case by applying the relationships of

the types given in Lemma 2.

5 Monte Carlo simulations

In this section, we examine the finite sample performance of the proposed estimator and

compare the proposed methods with OLS through Monte Carlo simulations. Our goal is to

consistently estimate the parameters (α1, α2, α3, β) of the model presented in Equation 1.

Specifically, we aim to consistently estimate the individual treatment effect and the joint

effect of participating in both programs relative to participating in only one program, under

the assumption that the true participation status of both programs, t∗1 and t∗2, are unobserved,
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but only, t1 and t2, their error-ridden surrogates driven, are observed. In addition, we assume

that other observed covariates, xi, are correctly measured.

5.1 Simulation setup

The data-generating process is simulated as follows. The true treatment indicators, t∗1 and

t∗2, are given by

t∗1i = 1(γ1xi + u1i > 0) and t∗2i = 1(γ1xi + u1i > 0),

where γ1 = γ2 = 1 and

(
u1i

u2i

)
∼ N

((
0

0

)
,

(
1 ρ∗

ρ∗ 1

))
, ρ∗ = 0.2. This setting can

be extended to explore different degrees of correlation between the two treatment regressors

by varying the values of ρ∗. The outcome equation yi is given by

yi = c+ α1t
∗
1i + α2t

∗
2i + α3t

∗
1i × t∗2i + xiβ + εi, where εi ∼ N(0, 1)

and xi ∼ N(0, 1). The true population regression parameters are c = 1, α1 = 5.0,

α2 = 2.8, α3 = 0.3, and β = 0.5. We aim to estimate the model parameters consistently and

of most interest, the individual (conditional) average treatment effects, α1 and α2, and the

joint average treatment effect, α3.

The econometrician does not observe the data-generating process and (true) treatment

regressors defined above, but only their erroneous surrogates. The econometrician then

estimates the following operational model:

yi = c+ α1t1i + α2t2i + α3t1i × t2i + xiβ + εi

Where t1i and t2 are error-driven proxies of true treatment status defined by:

t1i = t∗1i1(ν1i > a1)

t2i = t∗2i1(ν2i > a2)

The disturbance terms, ν1i ∼ U(0, 1) and ν2i ∼ U(0, 1), are drawn from uniform distri-

bution and the parameters, a1, and a2, are the misreporting probabilities in t1i and t2i, such
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that aj ∈ [0, 1) for j ∈ {1, 2}. The misreporting probabilities determine the proportion of

false negatives in observed binary regressors. For example, if there are no false negatives,

aj = 0, then 1(νji > 0) = 1 and tji = t∗ji. When aj 6= 0, we allow for aj×100%, for j ∈ {1, 2}

rate of false negatives. Specifically, we consider the following set of misclassification probabil-

ities, (a1, a2) ∈ {(0, 0.1); (0, 0.2); (0, 0.4); (0.1, 0.1); (0.1, 0.2); (0.1, 0.4); (0.2, 0.1); (0.2, 0.2);

(0.2, 0.4); (0.4, 0.1); (0.4, 0.2); (0.4, 0.4); }). In this way, we can examine OLS bias and the

performance of the proposed estimator at different degrees of misreporting within and across

programs.

We first estimate the model parameters, c, α1, α2, α3, and β, using the OLS estimator

and true treatment status, unobserved to the econometrician. We next report naive OLS

estimates based on the observed misclassified binary regressors. We extend our OLS analysis

to the problem of misspecification in the operational model, where we subsequently omit the

interaction term, t1i × t2i, and then the second treatment, t2i.

We then use our proposed estimator to estimate the model parameters. Note that our

estimator uses known misclassification probabilities, a1 and a2. Finally, we present estimates

when misclassification probabilities are unknown. We estimate them from the simulated data

using the framework proposed in Section 4.2.

5.2 Simulation results

In our Monte Carlo simulations, we execute 1000 replications using the sample size of n =

5000 observations. We report the averaged simulation results in Table 1 for the OLS and

adjusted least squares estimators. “OLS True” columns show OLS estimates using true

(unobserved) binary regressors. Our benchmark is the first column of “OLS True”, which

uses true binary regressors and has the correct model specification. Columns with “OLS

Observed” present naive OLS estimates obtained using the observed data. Our simulation

results are consistent with the theoretical discussion that misreporting errors may reverse

the sign of the joint treatment effect. This sign switching can occur even at low misreporting

rates, such as in cases where there is no misreporting in the first treatment and only a 10%

false negative rate in the second treatment. The bias in the joint treatment effect worsens

with increasing misreporting rates within and across programs. Misspecification introduces
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omitted variable bias, exacerbating the OLS bias in individual treatment effect estimates in

some settings. Empirical studies may be affected by these inconsistencies, leading to policy

prescriptions that are far from optimal.

We present the results of our proposed estimator, adjusted least squares, in the last three

columns of Table 1. We first show the results when the interaction term is excluded from the

model. As expected, these estimates are inconsistent due to omitted variable bias. However,

these estimates are less biased than those from naive OLS, especially when misreporting

in one or both programs is high. In contrast, when the model is correctly specified, the

adjusted least squares estimator consistently estimates the treatment effects and other model

parameters using known misreporting rates and when misreporting rates are unknown (and

estimated from the data). Our proposed estimator performs similarly to our benchmark, the

OLS estimator, when true (unobserved and error-free) binary regressors are used, and it is

superior to naive OLS.

We next assess the sensitivity of our proposed solution to various forms of misspecifi-

cation. First, we include false positives in our data-generating process by redefining the

observed treatment status as tji = t∗ji1(νji > aj) + (1 − t∗ji)1(νji < bj) for j ∈ (1, 2). Thus,

the observed treatment indicator, tj, has ( aj × 100) rate of false negatives and ( bj × 100)

rate of false positive when aj > 0 and bj > 0. We consider 1%, 5%, and 10% rates of false

positives in treatment one indicator and 1% and 5% in treatment one and two indicators.

The results show that our proposed estimator performs relatively well when the false positive

rate is low. The estimation bias worsens with higher rates of false positives and an increase

in false negatives for a given rate of false positives. Further, the bias of the interaction

term is relatively lower when misclassification probabilities are estimated rather than taken

as given. Second, we examine the robustness of the proposed solution to endogeneity in

treatment selection or program participation by allowing correlation between uji and εi for

j ∈ (1, 2). Specifically, we consider (0.2, 0.2), ( -0.2,-0.2) and (0.2,-0.2) degrees of correla-

tion, (Cor(u1i, εi), Cor(u2i, εi)). Our estimator performs quite similarly to the benchmark

OLS estimates that use true underlying treatment status, and both are slightly biased due

to endogeneity. This finding is not surprising, considering that our proposed method does

not correct for endogeneity.
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Third, we allow for non-normal error terms, u1i, u2i, in our bivariate treatment selection

model. We consider a number of distributions, including Gamma distribution, bivariate chi-

squared distribution, Logistic distribution, Laplace distribution, and exponentially modified

Gaussian distribution. The results suggest that the adjusted least squares estimator performs

well when the true error terms distribution is symmetrical and poorly otherwise.

Fourth, we also consider the case where the treatment selection equation is misspecified

by including w from a standard normal distribution, x2, or x3, in data generating process of

t1 and t2 but omitting them in the estimation. The proposed estimator is robust to omitting

w and x3 but becomes inconsistent when x2 is excluded. To minimize bias, we recommend

researchers consider whether plausible distribution functions and non-linear model misspeci-

fication affect the symmetry of the bivariate error terms distribution in their settings. Lastly,

the proposed estimator performs well and remains consistent when we allow the false negative

rate in treatment one to be known, while in the second treatment, unknown and estimated

using the proposed framework.

6 Empirical example

This section presents our empirical example. Our objective is to compute the adjusted least

squares estimates of the effect of SNAP and WIC on food security and HEI. We use the

publicly available version of the National Household Food Acquisition and Purchase Survey

(FoodAPS). To illustrate the applicability of our methods, we assume other covariates apart

from SNAP and WIC are error-free. We also do not account for potential endogeneity

in SNAP and WIC participation. We first present naive OLS estimates of the effect of

SNAP and WIC on food security. We then provide adjusted least squares estimates using

misclassification probabilities of SNAP and WIC available in the literature. Finally, we also

ignore the misclassification probabilities available in the literature and we estimate them

from the data using our proposed method as a first step and we use them to estimate the

treatment effects in the second step.
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6.1 SNAP and WIC programs

Households are food secure if they have access to the kinds and quantities of foods needed

for an active and healthy life at all times and for all its members, otherwise are food in-

secure. Food insecurity remains a public health concern in the United States, given the

high prevalence among low-income households. Approximately 30.3% of households below

130% of the federal poverty threshold were food insecure in 2021 (Coleman-Jensen et al.,

2022a,b). Food insecurity may also lead to poor diet quality, for example, food insecure

households may replace fruits, vegetables, and whole grains with calorie-dense and other

highly processed foods. In addition, food insecurity is associated with a broad spectrum of

detrimental health outcomes (Gundersen et al., 2011; Gundersen & Ziliak, 2018). Inadequate

economic resources for food may hinder households from obtaining adequate food or worsen

food hardship for already food-insecure households.

SNAP is the largest and WIC the third largest of the 15 domestic food and nutritional

assistance programs administered by USDA to address food insecurity and its consequences

(Oliveira, 2018). The SNAP program, mean tested, provides nutrition benefits worth more

than 60 billion US dollars a year and supplements the food budget of over 42 million indi-

viduals on average per month. WIC is also a means-tested federal program that provides

nutritional benefits worth more than 5 billion US dollars annually to over 7 million par-

ticipants on average per month. While SNAP gives vouchers to low-income households to

purchase healthy food, WIC provides them vouchers to buy only a restricted set of foods

for the nutrition requirements of pregnant, postpartum, and lactating women, infants, and

children under five. Moreover, WIC provides counseling and referrals for health services

(Bitler et al., 2003). This way, WIC may increase awareness of healthy food choices, and

SNAP widens the food choice set.

Misclassification in self-reported SNAP participation status is substantially documented

in the literature (e.g., Meyer et al. 2015, Courtemanche et al. 2019, Meyer et al. 2022).

Our empirical example uses the misclassification probabilities from Courtemanche et al.

(2019). Using FoodAPS data, Courtemanche et al. (2019) provide estimated participation

and misclassification error rates for 12 different classification choices of administrative or
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“gold standard” measures, ADMIN and ALERT, in the survey. We illustrate our empirical

application using ADMIN alternate 1, a gold standard measure with the highest misclassifi-

cation probability, 32.31% false negatives. For WIC, we use misclassification probabilities in

Fox & Hokayem (2022). These authors. link state administrative data on the WIC program

to Current Population Survey Annual Social and Economic Supplement and report a false

negative rate of 41.5%. Other empirical evidence about misreporting in WIC can be found

in Bitler et al. (2003).

We aim to use the adjusted least squares estimator to account for misreporting in esti-

mating the effect of participating in SNAP and WIC on food insecurity and HEI.

6.2 Data

FoodAPS is the first nationally representative survey of US households administered by

USDA. The survey is designed to collect comprehensive data about household food pur-

chases, including food obtained through food and nutrition assistance programs. FoodAPS

surveys 4,826 households obtained through a multistage sampling design to include low-

income households participating in SNAP, low-income households not in SNAP, and higher-

income households. In addition to food acquisition, the survey contains self-reported SNAP

and WIC participation status, administrative measures of SNAP participation, food security,

HEI, income, and demographic characteristics.

We restrict the sample to households simultaneously eligible for SNAP and WIC. These

are households with a pregnant woman, a child under five years old, and an income below

130% of the poverty threshold. We use USDA’s 30-day food security scores to construct

our outcome variable, food insecurity. Our food insecurity score comes from the affirmative

responses to the ten items on the household food security questionnaire included in the

FoodAPS. The food insecurity scores range from 0 to 10, with 0 representing high food

security, and the higher the scores, the greater the degree of food insecurity. We also examine

the impact of SNAP and WIC on HEI. Here the HEI index captures the healthfulness

or nutritional quality of foods obtained by households by assessing whether they comply

with the U.S. Dietary Guidelines for Americans (DGAs). We use the HEI-2010, obtained

by summing 12 components and ranges from 0 to 100, where higher scores show greater
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compliance with the recommended dietary guidelines.

Our empirical example accounts for other control variables. These include dummy vari-

ables for gender, education attainment (less than high school, high school or GED, some

college, and college degree or higher), ethnicity (Hispanic), race (white, black, or other),

employment (employed, searching for a job, or unemployed), and marital status (married,

previously married, or never married) of the primary respondent. We also include dummy

variables for whether the household lives in the rural census track, whether there are children

under five, whether they own any vehicle, and whether the primary store is SNAP-authorized.

Our continuous variables include primary respondents’ age, household size, household in-

come, number of children, and distance to the primary store in miles. Table 3 present the

summary statistics of our outcome variables. The average food insecurity and HEI scores

in our sample are 2.7 and 47.5, respectively. In Table 4, we present our summary statistics

of other covariates and show the overlap in WIC and SNAP participation. About 42.6% of

the sample received both SNAP and WIC, 28.1% received only SNAP, 17.3% WIC only, and

12.1% did not participate in either program.

6.3 Results

We present the regression estimates that use given misclassification probabilities in our em-

pirical example in Table 5. The “OLS” columns present estimates from a naive OLS estima-

tor, and the “Adj. LS” columns present results from the adjusted least squares estimators

proposed in our study. We use the SNAP false negative rate from Courtemanche et al.

(2019), a1 = 32.31%, and WIC false negative from Fox & Hokayem (2022), a1 = 41.5%. We

present estimates from food insecurity scores in the first two columns. Comparing the results

from naive OLS and the adjusted least squares, we observe differences in the magnitude of

coefficients across the two estimators. The coefficient of SNAP is almost 42% larger in naive

OLS compared to the adjusted least squares. We also observe a plausible expansion bias in

the estimated effect of WIC, where the naive OLS estimate coefficient is almost 62% higher

than the proposed method estimate. The coefficient of the interaction term is downward

biased in the naive OLS, indicating a stronger degree of complementarity than the proposed

method. Note that the interaction term estimates are negative in both estimators but 90%
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lower with naive OLS relative to the proposed method. The last two columns show results

using HEI-2010. Here, SNAP and WIC naive OLS coefficient estimates are lower, about 89%

and 60%, compared to the adjusted least squares estimates, whereas the coefficient for the

interaction term is 90% larger relative to the adjusted least squares coefficient estimate. We

also provide regression estimates using known misreporting probability and HEI components

in Appendix Tables C1 and C2 where for some components, we observe differences in both

magnitude and signs in the coefficient estimates of SNAP, WIC and the interaction term

across naive OLS and our proposed methods.

We next estimate misreporting probabilities in SNAP and WIC from the data as a first

step. Following the method that we proposed in Section 4.2, the estimated probabilities of

underreporting is â1 = 29.7% in SNAP and is â2 = 40.1% in WIC. These estimates are very

close to those obtained above from validation studies in the literature.

In the second step, we apply the estimated probability in the adjusted least square

estimator to obtain the effect of SNAP and WIC on food insecurity and healthy eating.

We present the results for food insecurity and HEI in Table 6 and for HEI components in

Appendix Tables C3 and C4. Overall, our results and inference are qualitatively similar to

when misreporting probabilities are known.

7 Conclusion

Literature on measurement errors in binary regressors mainly focuses on single misclassified

binary regressors. Our paper exploits the estimation of individual and joint treatment effects

in the presence of misclassification errors and other overlapping programs (also plausibly

measured with errors). We consider the case of false negatives, which is more common in

surveys, and allow the misreporting errors to depend on observable covariates through true

binary regressors. We show that the naive OLS estimator is biased, and the joint treatment

effect may have a sign opposite to the true effect (sign switching). This bias may have

dramatic consequences if used to inform policy, for instance, whether two programs are

complements or substitutes.

Our proposed estimator uses misclassification probabilities to estimate treatment effects
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consistently. When misclassification probabilities are unknown, we propose a method to

estimate them from the data and then apply them in the proposed estimator. It is evident in

Monte Carlo simulation that the proposed estimator consistently estimates treatment effects

in finite samples and outperforms the naive OLS estimator. In our empirical application,

the impact of SNAP and WIC on food security, we illustrate the application of our proposed

method in empirical settings where we observe substantial differences in the magnitude of

coefficient estimates in the naive OLS compared to the proposed method.

Note that our paper does not address the endogeneity in misclassified binary regressors

and misreporting. These are potential limitations of our study that are beyond the scope of

our current setting, and we leave them to be addressed in future research.
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Figure 1: Illustration of the sign-switching regions in OLS estimation of the joint treatment effect, α3 > 0
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Table 1: Monte carlo simulation results

a1 a2 Para.
True OLS OLS OLS OLS OLS OLS Adj.LS - Known Adj.LS - Unknown

Values True Observed True Observed True Observed Misreporting Misreporting
Rates Rates

0.0

0.1

α1 5.0 5.000 5.323 5.151 5.251 5.548 5.548 5.152 5.000 5.013
α2 2.8 2.800 2.550 2.951 2.461 2.951 2.800 2.781
α3 0.3 0.302 -0.163 0.303 0.330
β 0.5 0.499 0.677 0.499 0.679 1.220 1.220 0.499 0.499 0.489
c 1.0 0.998 1.247 0.954 1.272 2.231 2.231 0.953 0.998 0.992

0.2

α1 5.0 5.000 5.484 5.150 5.318 5.543 5.543 5.149 4.998 5.012
α2 2.8 2.801 2.361 2.950 2.111 2.951 2.801 2.781
α3 0.3 0.299 -0.425 0.302 0.331
β 0.5 0.499 0.800 0.499 0.808 1.220 1.220 0.499 0.499 0.488
c 1.0 1.000 1.440 0.956 1.503 2.235 2.235 0.956 1.000 0.994

0.4

α1 5.0 5.001 5.611 5.151 5.414 5.547 5.547 5.150 4.996 5.008
α2 2.8 2.799 2.075 2.949 1.641 2.948 2.796 2.779
α3 0.3 0.301 -0.680 0.307 0.337
β 0.5 0.500 0.967 0.500 0.981 1.221 1.221 0.501 0.501 0.489
c 1.0 1.000 1.722 0.955 1.806 2.232 2.232 0.957 1.001 0.995

0.1

0.1

α1 5.0 5.000 4.790 5.149 4.383 5.542 4.644 5.150 4.999 5.000
α2 2.8 2.802 3.015 2.951 2.607 2.952 2.801 2.799
α3 0.3 0.299 -0.830 0.302 0.308
β 0.5 0.499 0.992 0.499 1.010 1.221 1.605 0.499 0.498 0.496
c 1.0 1.000 1.729 0.955 1.859 2.234 2.914 0.954 0.998 0.998

0.2

α1 5.0 5.000 4.882 5.150 4.447 5.544 4.648 5.153 4.998 5.000
α2 2.8 2.801 2.764 2.951 2.237 2.949 2.795 2.792
α3 0.3 0.300 -1.004 0.310 0.314
β 0.5 0.499 1.126 0.499 1.151 1.221 1.605 0.499 0.498 0.497
c 1.0 1.000 1.958 0.955 2.110 2.234 2.914 0.954 0.999 1.000

0.4

α1 5.0 5.001 4.898 5.151 4.530 5.545 4.647 5.154 5.000 5.007
α2 2.8 2.798 2.393 2.948 1.744 2.957 2.804 2.798
α3 0.3 0.301 -1.140 0.310 0.304
β 0.5 0.501 1.310 0.501 1.339 1.220 1.605 0.496 0.495 0.496
c 1.0 1.000 2.298 0.955 2.442 2.232 2.913 0.947 0.991 0.993

0.2

0.1

α1 5.0 4.999 4.383 5.149 3.763 5.542 3.997 5.157 5.001 4.996
α2 2.8 2.799 3.220 2.950 2.708 2.946 2.789 2.797
α3 0.3 0.301 -1.182 0.313 0.307
β 0.5 0.500 1.218 0.500 1.248 1.221 1.882 0.498 0.498 0.499
c 1.0 1.000 2.103 0.956 2.282 2.235 3.407 0.954 0.999 1.001

0.2

α1 5.0 5.000 4.423 5.150 3.817 5.545 3.997 5.149 4.998 5.003
α2 2.8 2.800 2.934 2.949 2.329 2.951 2.801 2.798
α3 0.3 0.299 -1.305 0.302 0.304
β 0.5 0.500 1.361 0.500 1.398 1.220 1.883 0.501 0.500 0.498
c 1.0 1.001 2.358 0.957 2.549 2.234 3.408 0.957 1.000 1.000

0.4

α1 5.0 4.999 4.359 5.151 3.894 5.547 3.999 5.155 5.000 5.001
α2 2.8 2.799 2.498 2.950 1.818 2.953 2.799 2.800
α3 0.3 0.303 -1.346 0.312 0.316
β 0.5 0.500 1.561 0.500 1.599 1.220 1.882 0.497 0.495 0.492
c 1.0 1.000 2.740 0.955 2.903 2.232 3.406 0.952 0.995 0.995

0.4

0.1

α1 5.0 5.001 3.788 5.151 2.934 5.545 3.128 5.163 5.011 5.006
α2 2.8 2.798 3.330 2.948 2.848 2.944 2.788 2.797
α3 0.3 0.300 -1.496 0.310 0.299
β 0.5 0.501 1.529 0.501 1.567 1.222 2.258 0.500 0.498 0.501
c 1.0 1.000 2.657 0.956 2.845 2.233 4.069 0.951 0.995 0.999

0.2

α1 5.0 5.002 3.752 5.151 2.984 5.544 3.132 5.176 5.011 5.005
α2 2.8 2.800 2.972 2.950 2.446 2.940 2.772 2.785
α3 0.3 0.299 -1.519 0.336 0.315
β 0.5 0.499 1.684 0.499 1.727 1.220 2.254 0.492 0.490 0.497
c 1.0 0.999 2.947 0.955 3.131 2.234 4.065 0.943 0.989 0.996

0.4

α1 5.0 4.998 3.588 5.148 3.038 5.545 3.126 5.162 4.992 4.998
α2 2.8 2.800 2.461 2.950 1.912 2.950 2.780 2.784
α3 0.3 0.300 -1.453 0.347 0.327
β 0.5 0.501 1.910 0.501 1.948 1.221 2.257 0.494 0.488 0.494
c 1.0 1.001 3.376 0.957 3.521 2.234 4.068 0.947 0.989 0.996
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Table 2: Monte carlo simulation results: Average Marginal Effects

a1 a2 OLS True OLS Observed Adj.LS known Adj.LS - Unknown

Misreporting Rates Misreporting Rates

0.0

0.1
5.150 5.383 5.147 5.154

2.950 2.263 2.953 2.950

0.2
5.150 5.514 5.146 5.153

2.950 1.914 2.957 2.952

0.4
5.150 5.667 5.142 5.151

2.950 1.543 2.971 2.963

0.1

0.1
5.150 4.195 5.150 5.145

2.950 2.680 2.952 2.953

0.2
5.150 4.311 5.159 5.156

2.950 2.306 2.951 2.950

0.4
5.150 4.409 5.144 5.151

2.950 1.874 2.981 2.960

0.2

0.1
5.150 3.565 5.175 5.157

2.950 2.882 2.950 2.954

0.2
5.150 3.636 5.160 5.161

2.950 2.479 2.958 2.960

0.4
5.150 3.677 5.157 5.166

2.950 1.982 2.972 2.955

0.4

0.1
5.150 2.842 5.174 5.164

2.950 3.080 2.952 2.955

0.2
5.150 2.851 5.196 5.163

2.950 2.599 2.943 2.953

0.4
5.150 2.806 5.170 5.174

2.950 2.014 2.961 2.949
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Table 3: Summary Statistics: Food Insecurity and Healthy Eating

Statistic Mean St. Dev. Min Max

Food Insecurity Score 2.679 2.665 0 10

Health Eating Index 47.541 11.972 16.310 84.952

Total vegetables 2.525 1.459 0.000 5.000

Greens and beans 1.246 1.696 0.000 5.000

Total fruit 1.984 1.598 0.000 5.000

Whole fruit 2.146 1.871 0.000 5.000

Whole grains 1.650 2.265 0.000 10.000

Dairy 5.934 3.159 0.000 10.000

Total protein foods 3.890 1.380 0.000 5.000

Seafood and plant proteins 1.590 1.701 0.000 5.000

Fatty acids 4.565 3.341 0.000 10.000

Sodium 5.759 3.547 0.000 10.000

Refined grains 5.611 3.503 0.000 10.000

Empty calories 10.642 5.617 0.000 20.000
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Table 4: Summary Statistics: Supplemental Nutrition Assistance Program
(SNAP), Special Supplemental Nutrition Program for Women, Infants, and Chil-
dren (WIC) and Demographic Characteristics

Statistic Mean St. Dev. Min Max

SNAP 0.703 0.458 0 1
WIC 0.599 0.491 0 1
SNAP × WIC 0.425 0.495 0 1
Female 0.889 0.315 0 1
Age (years) 35.056 11.110 16.500 85.000
Less than high school 0.321 0.468 0 1
High school or GED 0.321 0.468 0 1
Some college 0.273 0.446 0 1
College or more 0.085 0.279 0 1
Ethnicity - Hispanic 0.348 0.477 0 1
Race - white 0.611 0.488 0 1
Race - black 0.203 0.403 0 1
Race - others 0.186 0.390 0 1
Employed 0.343 0.475 0 1
Searching for job 0.147 0.355 0 1
Unemployed 0.510 0.501 0 1
Married 0.355 0.479 0 1
Previously married 0.263 0.441 0 1
Never married 0.382 0.486 0 1
Rural 0.232 0.423 0 1
Number of children under 5 1.498 0.793 0 6
Household size 4.746 1.878 1 14
Household income (monthly, 1000$) 1.621 0.922 0.000 5.970
Income to poverty ratio 0.735 0.352 0.000 1.504
Any vehicle indicator 0.749 0.434 0 1
House renting 0.766 0.424 0 1
Food pantry use 0.109 0.312 0 1
Primary store distance (miles) 2.821 4.168 0.078 48.967
Primary store SNAP authorized 0.990 0.098 0 1
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Table 5: Impact of Supplemental Nutrition Assistance Program (SNAP) and
Special Supplemental Nutrition Program for Women, Infants, and Children
(WIC) on Food Insecurity and Healthy Eating using Misclassification Proba-
bilities from Validation Data

Dependent Variables: Food Insecurity Score Health Eating Index

OLS Adj.LS OLS Adj.LS

SNAP 0.211 0.122 -3.102 -0.352
(0.465) (0.087) (2.023) (0.339)

WIC 0.355 0.135 -1.968 -0.793*
(0.493) (0.102) (2.144) (0.445)

SNAP × WIC -0.752 -0.072 4.328* 0.428*
(0.583) (0.062) (2.538) (0.241)

Female 0.625 0.560 1.458 1.463
(0.434) (0.387) (1.887) (1.781)

Age -0.002 -0.002 0.118* 0.124**
(0.014) (0.013) (0.061) (0.062)

Rural 0.127 0.114 -4.911*** -4.837***
(0.364) (0.370) (1.583) (1.647)

Household size 0.063 0.060 -0.491 -0.523
(0.164) (0.147) (0.714) (0.748)

Household income 0.413 0.470 -2.649 -2.737
(0.596) (0.533) (2.595) (2.441)

Food pantry use 1.101** 1.155** -0.901 -1.221
(0.441) (0.500) (1.920) (1.702)

Note: Standard errors in parenthesis and bootstrapped. The analytical sample comes from FoodAPS and
consists of households with a pregnant woman or child under five years old and below 130% of the federal
poverty threshold. The probability of false negatives in SNAP comes from Courtemanche et al. (2019),
a1 = 32.31%, and in WIC comes from Fox & Hokayem (2022), a2 = 41.5%. Regressors not reported
include primary respondent education, ethnicity, race, employment, marital status, age, rural household
residency, indicator and count of children below the age of five, number of children, income to poverty
ratio, primary store distance, whether the primary store is SNAP authorized, whether the household has
any vehicle and whether the household is renting the house. Significance codes: *** p<0.01, ** p<0.05,
* p<0.1
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Table 6: Impact of Supplemental Nutrition Assistance Program (SNAP) and
Special Supplemental Nutrition Program for Women, Infants, and Children
(WIC) on Food Insecurity and Healthy Eating using Estimated Misclassifica-
tion Probabilities

Dependent Variables: Food Insecurity Score Health Eating Index

OLS Adj.LS OLS Adj.LS

SNAP 0.211 0.138 -3.102 -0.392
(0.465) (0.099) (2.023) (0.387)

WIC 0.355 0.148 -1.968 -0.869*
(0.493) (0.111) (2.144) (0.485)

SNAP × WIC -0.752 -0.083 4.328* 0.491*
(0.583) (0.071) (2.538) (0.278)

Female 0.625 0.557 1.458 1.468
(0.434) (0.387) (1.887) (1.782)

Age -0.002 -0.002 0.118* 0.124**
(0.014) (0.013) (0.061) (0.062)

Rural 0.127 0.115 -4.911*** -4.840***
(0.364) (0.370) (1.583) (1.648)

Household size 0.063 0.060 -0.491 -0.523
(0.164) (0.147) (0.714) (0.748)

Household income 0.413 0.472 -2.649 -2.738
(0.596) (0.533) (2.595) (2.441)

Food pantry use 1.101** 1.154** -0.901 -1.217
(0.441) (0.500) (1.920) (1.703)

Note: Standard errors in parenthesis and bootstrapped. The analytical sample comes from FoodAPS and
consists of households with a pregnant woman or child under five years old and below 130% of the federal
poverty threshold. The probability of false negatives in SNAP is a1 = 29.7%, and in WIC is a2 = 40.1%.
The misclassification probabilities are estimated by extending parametric procedure of Hausman et al.
(1998) to bivariate models. Regressors not reported include primary respondent education, ethnicity,
race, employment, marital status, age, rural household residency, indicator and count of children below
the age of five, number of children, income to poverty ratio, primary store distance, whether the primary
store is SNAP authorized, whether the household has any vehicle and whether the household is renting
the house. Significance codes: *** p<0.01, ** p<0.05, * p<0.1
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Appendix A. Mathematical Proofs

A.1. Proof of Lemma 1

Proof.

OLS estimation Biasdness: least squares estimates of the parameters, θLS = [α1, α2, α3, β]′,

in the operation model in equation (3) is given by

θ̂LS = (Z ′Z)−1Z ′y

where Z = [t1, t2, t3, x] and t3 = t1 × t2. It follows that

θ̂LS = (Z ′Z)−1Z ′(Z∗θ + ε)

such that Z = [t∗1, t
∗
2, t

∗
3, x]. Z ′Z is positive-semi definite by Cauchy-Schwarz inequal-

ity. Therefore, the bias term in OLS bias, given by θ̂LS = (Z ′Z)−1Z ′Z∗θ + (Z ′Z)−1Z ′ε, is

determined by Z ′Z∗ and Z ′ε.

OLS estimation Inconsistency: We can express θ̂LS = (Z ′Z)−1Z ′Z∗θ + (Z ′Z)−1Z ′ε

as

θ̂LS =

(
Z ′Z

n

)−1(
Z ′Z

n

∗)
θ +

(
Z ′Z

n

)−1
Z ′ε

n

By taking the probability limit and applying Slutsky’s Lemma, we have

plim θ̂LS = plim

(
Z ′Z

n

)−1

plim

(
Z ′Z

n

∗)
θ + plim

(
Z ′Z

n

)−1

plim
Z ′ε

n

By the Weak Law of Large Numbers and continuous mapping theorem, we have

plim

(
Z ′Z

n

)−1
p−→ (Cov (Z,Z))−1

Following similar argument as above, we have

plim
Z ′Z∗

n

p−→Cov (Z,Z∗)
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and by exogeneity of covariates in Z, we have

plim
Z ′ε

n

p−→Cov (Z, ε) = 0

Combining the expressions above, we can easily obtain the results in Lemma 1, that is

plim θ̂LS = (Cov (Z,Z))−1 Cov (Z,Z∗) θ

Proof.

Joint treatment effect OLS estimation Biasdness: The least squares estimates of

α3 is given by

α̂3LS = (t′3M−t3t3)
−1
t3M−t3y

Where M−t3 = 1− Z−t3
(
Z ′−t3Z−t3

)−1
Z ′−t3 and Z−t3 = [t1, t2, x]. It follows that

α̂3LS = (t′3M−t3t3)
−1
t3M−t3

(
Z∗−t3θ−α3 + α3t

∗
3 + ε

)
and

α̂3LS − α3 = (t′3M−t3t3)
−1
t3M−t3

(
Z∗−t3θ−α3 + α3 (t∗3 − t3) + ε

)
By Cauchy-Schwarz inequality, (t′3M−t3t3)−1 is positive semi-definite. Hence, the bias in

OLS estimates, given by α̂3LS−α3 = (t′3M−t3t3)−1 (t3M−t3Z∗−t3θ−α3 + t3M−t3 (t∗3 − t3)α3 + t3M−t3ε
)
,

is driven by the remaining terms, that is, t3M−t3Z
∗
−t3 , t3M−t3t

∗
3, and t3M−t3ε.

Joint treatment effect OLS estimation Inconsistency: We can expressed the bias

term in least squares estimator as

α̂3LS − α3 =

(
t′3M−t3t3

n

)−1(t3M−t3Z∗−t3
n

θ−α3 +
t3M−t3 (t∗3 − t3)

n
α3 +

t3M−t3ε

n

)
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Taking probability limit and using Slutsky Lemma, we have

plim α̂3LS−α3 = plim

(
t′3M−t3t3

n

)−1(
plim

t3M−t3Z
∗
−t3

n
θ−α3 + plim

t3M−t3 (t∗3 − t3)

n
α3 + plim

t3M−t3ε

n

)

Expanding the projection matrix M−t3 , we can then express plim
t′3M−t3t3

n
as

plim
t′3M−t3t3

n
= plim

t′3

(
1− Z−t3

(
Z ′−t3Z−t3

)−1
Z ′−t3

)
t3

n

= plim
t′3t3
n
− plim

t′3Z−t3
(
Z ′−t3Z−t3

)−1
Z ′−t3t3

n

By Weak Law of Large Numbers, we have

plim
t′3M−t3t3

n
= E [t3i]− E [t′3izi,−t3i ]

(
E
[
z′i,−t3izi,−t3i

])−1 E [zi,−t3it3i]

By continuous mapping theorem, we have

(
plim

t′3M−t3t3
n

)−1

=
(
E [t3i]− E [t′3izi,−t3i ]

(
E
[
z′i,−t3izi,−t3i

])−1 E [zi,−t3it3i]
)−1

Applying the arguments above to plim
t3M−t3Z

∗
−t3

n
θ−α3 and plim

t3M−t3 (t∗3 − t3)

n
, It

follows that

plim
t3M−t3Z

∗
−t3

n
θ−α3 = E

[
t3iz

′∗
i,−t3iθ−α3

]
−E

[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
i,−t3i

])−1 E
[
zi,−t3iz

∗
i,−t3iθ−α3

]
and

plim
t3M−t3 (t∗3 − t3)

n
= E [t3i (t

∗
3i − t3i)]− E

[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
i,−t3i

])−1 E [zi,−t3i (t∗3i − t3i)]

= −E
[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
i,−t3i

])−1 E [zi,−t3i (t∗3i − t3i)]

Finally, following the exogenoity of t3 and other covariates in the model, we have

plim
t3M−t3ε

n
= E [t3iε

′
i]− E

[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
i,−t3i

])−1 E [zi,−t3iεi] = 0
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We get the desired results, the asymptotic bias of the joint treatment effect OLS estima-

tor, α3LS, by combining all the terms above, that is

plim α̂3LS − α3 =
A−Bα3

Q

Where A = E
[
t3iz

′∗
i,−t3iθ−α3

]
− E

[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
i,−t3i

])−1 E
[
zi,−t3iz

∗
i,−t3iθ−α3

]
,

B = E
[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
i,−t3i

])−1 E [zi,−t3i (t∗3i − t3i)],

Q = E [t3i]− E
[
t3iz

′
i,−t3i

] (
E
[
zi,−t3iz

′
−3i

])−1 E [zi,−t3it3i],

θ−α3 = [α1, α2, β]′, and zi,−t3i = [t1i; t2i;xi]

A.2. Proof of Lemma 2

Proof.

Components of estimator of W, Ŵ (a1, a2): W , variance-covariance matrix Cov(Z,Z∗),

is given by

W =



Cov(t1i, t
∗
1i) Cov(t1i, t

∗
2i) Cov(t1i, t

∗
3i) Cov(t1i, xi)

Cov(t2i, t
∗
1i) Cov(t2i, t

∗
2i) Cov(t2i, t

∗
3i) Cov(t2i, xi)

Cov(t3i, t
∗
1i) Cov(t3i, t

∗
2i) Cov(t3i, t

∗
3i) Cov(t3i, xi)

Cov(xi, t
∗
1i) Cov(xi, t

∗
2i) Cov(xi, t

∗
3i) Var(xi)


Given the data, all terms in W except those in the last column, are not directly observed

by the researcher since they are determined by true (and unobserved) participation status.

Given the misclassification probabilities, a1 and a2, the probability of false negative in t1i

and t2i, we can obtain the probability of false negative in the interaction term, t3i, as follows.

By the Law of Iterated Expectations, E[t∗3i] = E[t∗1it
∗
2i] = E[E[t∗1i|t∗2i] E[t∗2i|t∗1i]] . Con-

sidering that Pr(tji = 1) = (1 − aj) Pr(t∗ji = 1) for j ∈ {1, 2}, it follows that E[t∗3i] =

E
[
E[t1i|t∗2i]
1− a1

E[t2i|t∗1i]
1− a2

]
=

E [t1i t2i]

(1− a1)(1− a2i)
=

E [t3i]

1− a3

, where a3 is the probability of false

negative in t3i and is given by a3 = a1 + a2 − a1 × a2.

Let’s first consider the covariance between observed (and plausibly error-driven) program
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participation status and the underlying (true) status, that is, Cov(tji, t
∗
ji), for j ∈ {1, 2, 3}.

We can write

Cov(tji, t
∗
ji) = E

[
tji, t

∗
ji

]
− E [tji]E

[
t∗ji
]

= Pr
[
tji = 1, t∗ji = 1

]
− Pr [tji = 1] Pr

[
t∗ji = 1

]
= Pr

[
tji = 1|t∗ji = 1

]
Pr
[
t∗ji = 1

]
− Pr [tji = 1] Pr

[
t∗ji = 1

]
=
(
1− Pr

[
tji = 0|t∗ji = 1

])
Pr
[
t∗ji = 1

]
− Pr [tji = 1] Pr

[
t∗ji = 1

]
= (1− aj − Pr [tji = 1]) Pr

[
t∗ji = 1

]
From Pr

[
t∗ji = 1

]
= (1− aj)Pr [tji = 1], it follows that

Cov(tji, t
∗
ji) =

(1− aj − Pr [tji = 1]) Pr [tji = 1]

(1− aj)

=
(1− aj − Pr [tji = 1]) Var (tji)

(1− aj) (Pr [tji = 1])

=
(1− aj − Pj)

(1− aj) (1− Pj)
Var (tji)

Hence, for j ∈ {1, 2}, Cov(tji, t
∗
ji) can be expressed as

Cov(tji, t
∗
ji) = ηjVar (tji)

where ηj =
1− aj − Pj

(1− aj) (1− Pj)

Next, we examine covariance between true (unobserved) participation status in one pro-

gram, t∗ji , and the observed participation status in the other program, tk, that is, Cov(tki, t
∗
ji)

where j, k ∈ {1, 2} and j 6= k. By applying the Law of Iterated Expectations, we have

Cov(tki, t
∗
ji) = Cov

(
tki,E[t∗ji|tki]

)
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It follows that E[t∗ji|tki] =
E[tji|tki]
1− aj

, which implies that

Cov(tki, t
∗
ji) = Cov

(
tki,

E[tji|tki]
1− aj

)
=

1

1− aj
Cov (tki,E[tji|tki])

=
1

1− aj
Cov (tki, tji)

We now have the results in Lemma 1, that is, for j, k ∈ {1, 2} and j 6= k,

Cov(tki, t
∗
ji) = ζjCov (tki, tji)

where ζj =
1

1− aj

We then turn to the covariance between individual program participation and the inter-

action term given by Cov(tji, t
∗
3i), for j ∈ {1, 2}.

Cov(tji, t
∗
3i) = E [tjit

∗
3i]− E [tji]E [t∗3i]

We know that E [t∗3i] =
E[t3i]

1− a3

and E [tjit
∗
3i] = E [tji t

∗
ki], so that, by the law of Iterated

expectation,

E [tjit
∗
3i] = E [tjiE[t∗ki|tji]] = E

[
tji

E[tki|tji]
1− ak

]
=

E [tjitki]

1− ak
=

E [t3i]

1− ak
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where k = {1, 2} and k 6= j. Since t3i = tji × tki = tji × t3i, it follows that

Cov(tji, t
∗
3i) =

E [tjit3ii]

1− ak
− E [tji]E [t3i]

1− a3

=
E [tjit3i]

(1− ak)
− E [tji]E [t3i]

(1− aj)(1− ak)

=
E [tjit3ii]− E [tji]E [t3i]− ajE [tjit3i]

(1− aj)(1− ak)

=
Cov (tji, t3i)− ajE [t3i]

(1− aj)(1− ak)

=

[
Cov (tji, t3i)− ajP3

(1− aj)(1− ak)Cov (tji, t3i)

]
Cov (tji, t3i)

We get the results in Lemma 2 if we rewrite the Cov (tji, t3i) terms in the bracket as

Cov (tji, t3i) = E [tjit3i]− E [tji]E [t3i] = E [t3i]− E [tji]E [t3i] = P3 (1− Pj), that is

Cov(tji, t
∗
3i) =

[
P3 (1− Pj)− ajP3

(1− aj)(1− ak)P3 (1− Pj)

]
Cov (tji, t3i)

=

[
1− aj − Pj

(1− aj) (1− Pj) (1− ak)

]
Cov (tji, t3i)

so that, for j, k ∈ {1, 2} and j 6= k,

Cov(tji, t
∗
3i) = ζkηjCov(tji, t3i)

where ζk =
1

1− ak
and ηj =

1− aj − Pj
1− aj

The remaining terms in W are determined by covariance between xi, assumed to be

error-free, and underlying (true) program participation status, t∗1i and t∗2i, and the interaction

term, t∗3i. Likewise, we can express these terms as functions of misreporting probabilities
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and sample statistics. For j ∈ {1, 2, 3}, it follows that

Cov(xi, t
∗
ji) = E[xit

∗
ji]− E[xi]E[t∗ji]

= E[xiE[t∗ji|xi]]− E[xi]E[exp[t∗j |xi]] by the Law of Iterated Expectations

= E
[
xiE[tji|xi]

1− aj

]
− E[xi]E

[
E[
tji|xi]
1− aj

]
=

E [xitji]− E[xi]E [tji]]

1− aj

=
Cov(xi, tji)

1− aj
= ζjCov(xi, tji)

We obtain Lemma 2 by combining the results above, giving us the estimator of W ,

Ŵ (a1, a2), which is a function of misclassification probabilities and other sample statistics

that can easily computed in the data.

A.3. Proof of Theorem 1

Proof.

Consistency: The Adjusted Least Squares Estimator is given by

α̂1Adj

α̂2Adj

α̂3Adj

β̂Adj


=



η1σ
2
t1

ζ2σt1t2 η1ζ2σt1t3 σt1x

ζ1σt2t1 η2σ
2
t2

η2ζ1σt1t3 σt2x

η1σt3t1 η2σt3t2 η3σ
2
t3

σt3x

ζ1σxt1 ζ2σxt2 ζ3σxt3 σ2
x



−1 

σyt1

σyt2

σyt3

σyx


which can be expressed in matrix and vector notations as:

θ̂Adj = W (a1, a2)−1 ΣZy

where Z = [t1, t2, t3, x], ΣZy = [σyt1 σyt2 σyt3 σyx]
′ and for any covariates, say ri and si,

σrs =
1

n

∑n
i=1(ri − r̄)(si − s̄)′ and σ2

r =
1

n

∑n
i=1(ri − r̄)(ri − r̄)′where r̄ and s̄ are the sample

mean of ri and si. It follows that θ̂Adj = W (a1, a2)−1 (ΣZZ∗θ + ΣZε).

We already know from Lemma 2 that ΣZZ∗ can be expressed in terms of misclassification
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probabilities as W (a1, a2), so θ̂Adj = θ +W (a1, a2)−1 ΣZε. Hence, it follows that

θ̂Adj − θ = W (a1, a2)−1 ΣZε

By taking the probability limits and applying Slutsky’s Lemma, we have

plim θ̂Adj − θ = plim W (a1, a2)−1 plim ΣZε

= Γ−1Λ

where, by the Weak Law of Large numbers, we have

Γ =



η1Var(t1i) ζ2Cov(t1i, t2i) η1ζ2Cov(t1i, t3i) Cov(t1i, xi)

ζ1Cov(t2i, t1i) η2Var(t2i) η2ζ1Cov(t1i, t3i) Cov(t2i, xi)

η1Cov(t3i, t1i) η2Cov(t3i, t2i) η3Var(t3i) Cov(t3i, xi)

ζ1Cov(xi, t1i) ζ2Cov(xi, t2i) ζ3Cov(xi, t3i) Var(xi)


and Λ = [Cov(t1i, εi), Cov(t2i, εi), Cov(t3i, εi), Cov(xi, εi)]

′. By the Law of Iterated Ex-

pectations and under Assumption 1, E[εi|t1i, t2i, t3i, xi] = E[E[εi|t∗1i, t∗2i, t∗3i, xi]|t1i, t2i, t3i, xi] =

0, therefore Cov(t1i, εi) = Cov(t2i, εi) = Cov(t3i, εi) = Cov(xi, εi) = 0, implying that

Λ = 0, and θ̂Adj − θ = 0. This is equivalent to θAdj
p−→ θ, which translates to, α1Adj

p−→α1,

α2Adj
p−→α2, α3Adj

p−→α3, and βAdj
p−→ β.
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Appendix B. Data

B.1 Food Insecurity Score

The food Insecurity score in our analysis represents the USDA’s 30-day Adult Food Security

Scale obtained from the 10 questions (E2-E9a) included in the last interview of the National

Household Food Acquisition and Purchase Survey (FoodAPS) to examine household food

security status. The questions take into account severity of conditions and behaviors that

characterize food insecurity. We represent the 10 questions in Appendix B Table B1.

Appendix Table B1: Food Security Score Questions in National Household Food
Acquisition and Purchase Survey (FoodAPS)

Variable Definition

Question E2 In last 30 days, worried food would run out before we got more money

1 - Often True, 2 - Sometimes True, 3 - Never True

Question E3 Food ran out and had no money to buy more, in last 30 days

1 - Often True, 2 - Sometimes True, 3 - Never True

Question E4 Couldn’t afford to eat balanced meals, in last 30 days

1 - Often True, 2 - Sometimes True, 3 - Never True, -997 - Don’t Know

Question E5 Adults skipped or cut size of meals b/c not enough money, in last 30 days (Y/N)

0 - No, 1 - Yes, -998- Refused, -996 - Valid Skip

Question E5a Number of days adults skipped/cut meal size b/c not enough money, last 30 days

Question E6 Eat less than felt you should b/c not enough money, in last 30 days (Y/N)

0 - No, 1 - Yes, -998- Refused, -997 - Don’t Know, -996 - Valid Skip

Question E7 Ever hungry but didn’t eat b/c not enough money, in last 30 days (Y/N)

0 - No, 1 - Yes, -996 - Valid Skip

Question E8 Lose weight b/c not enough money for food, in last 30 days (Y/N)

0 - No, 1 - Yes, -997 - Don’t Know, -996 - Valid Skip

Question E9 Skip food all day b/c not enough money for food, in last 30 days (Y/N)

0 - No, 1 - Yes, -996 - Valid Skip

Question E9a How often adults skipped food all day b/c not enough money, in last 30 days

-997 - Don’t Know, -996 - Valid Skip

The Food Security Scale codes “Yes,” “Often,” “Sometimes,” and “three or more days”

responses to E2 - E9a questions described above as affirmative responses. The Food Security

Score is obtained by summing up the affirmative responses, ranging from 0 to 10. In our
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analysis, we term it Food Insecurity Score to reflect that 0 represents high food security and

increasing values indicate increasing food inadequacy.

B.2 Health Eating Index-2010

National Household Food Purchase and Acquisition Survey (FoodAPS) also aimed to provide

data that can be used to evaluate the nutrition quality of food acquired by households. For

one week, between April 2012 and January 2013, the survey collected detailed information

regarding the types of food obtained by households that can be used in computing the

Healthy Eating Index (HEI). The Healthy Eating Index (HEI) measures overall diet quality

and the quality of several dietary components, which can be used to examine compliance

with the U.S. Dietary Guidelines for Americans (DGAs). Several iterations of HEI have been

developed by the U.S. Department of Health and Human Services National Cancer Institute

(NCI) and the U.S. Department of Agriculture (USDA) researchers since 2005. Following

Mancino et al. (2018), we consider 2010 Health Eating Index (HEI-2010) scores to assess the

quality of food items reported in FoodAPS. HEI-2010 scores range from 0 to 100 and have 12

components, as presented in Appendix Table B2 . The calculation of HEI-2010 accounts for

the variation in individual total caloric needs. The process matches the reported food items

in Food APS with Food Pattern Equivalent Database for each food item and the USDA

nutrient food code from USDA Food and Nutrient Database for Dietary Studies (FNDDS).

We obtain the method, and the code to compute the 2010 HEI from Mancino et al. (2018).
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Appendix Table B2: HEI–20101 Components and Scoring Standards

Component
Maximum Standard For Standard For Minimum
Points Maximum Score Score of Zero

Adequacy:
Total Fruita 5 ≥ 0.8 cup equiv. per 1,000 kcal No Fruit

Whole Fruitb 5 ≥ 0.4 cup equiv. per 1,000 kcal No Whole Fruit

Total Vegetablesc 5 ≥ 1.1 cup equiv. per 1,000 kcal No Vegetables

Greens and Beansc 5 ≥ 0.2 cup equiv. per 1,000 kcal No Dark Green Vegetables
or Beans and Peas

Whole Grains 10 ≥ 1.5 oz equiv. per 1,000 kcal No Whole Grains

Dairyd 10 ≥ 1.3cup equiv. per 1,000 kcal No Dairy

Total Protein Foods 5 ≥ 2.5 oz equiv. per 1,000 kcal No Protein Foods

Seafood and 5 ≥ 0.8 oz equiv. per 1,000 kcal No Seafood or Plant Proteins
Plant Proteinse, f

Fatty Acidsg 10 (PUFAs + MUFAs)/SFAs ≥ 2.5 (PUFAs + MUFAs)/SFAs ≤ 1.2

Moderation:
Refined Grains 10 ≤ 1.8 oz equiv. per 1,000 kcal ≥ 4.3 oz equiv. per 1,000 kcal

Sodium 10 ≤ 1.1 gram per 1,000 kcal ≥ 2.0 grams per 1,000 kcal

Empty Caloriesh 20 ≤ 19% of energy ≥ 50% of energy

Note: Intakes between the minimum and maximum standards are scored proportionately. The total HEI score is the
sum of the adequacy components (i.e. foods to eat more of for good health) and moderation components (i.e. foods to
limit for good health).
a Includes 100% fruit juice.
b Includes all forms except juice.
c Includes any beans and peas not counted as Total Protein Foods.
d Includes all milk products, such as fluid milk, yogurt, and cheese, and fortified soy beverages.
e Beans and peas are included here (and not with vegetables) when the Total Protein Foods standard is otherwise not
met.
f Includes seafood, nuts, seeds, soy products (other than beverages) as well as beans and peas counted as Total Protein
Foods.
g Ratio of poly- and monounsaturated fatty acids (PUFAs and MUFAs) to saturated fatty acids (SFAs).
h Calories from solid fats, alcohol, and added sugars; threshold for counting alcohol is > 13 grams/1000 kcal.
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Appendix C. Empirical Example Additional Results

Appendix Table C1: Impact of Supplemental Nutrition Assistance Program
(SNAP) and Special Supplemental Nutrition Program for Women, Infants,
and Children (WIC) on Healthy Eating - Adequacy component using Mis-
classification Probabilities from Validation Data

OLS Adj.LS OLS Adj.LS OLS Adj.LS

Panel 1
Dependent Variables: Total Fruit Whole Fruit Total Vegetables

SNAP 0.065 -0.022 -0.331 -0.038 -0.013 0.048
(0.273) (0.047) (0.317) (0.053) (0.255) (0.043)

WIC 0.089 -0.043 -0.475 -0.003 0.084 0.044
(0.289) (0.058) (0.336) (0.063) (0.270) (0.055)

SNAP × WIC 0.044 0.003 0.470 0.048 -0.212 -0.020
(0.342) (0.032) (0.398) (0.038) (0.320) (0.033)

Panel 2
Dependent Variables: Greens and Beans Whole Grains Dairy

SNAP -0.543* 0.008 -0.263 -0.042 -0.184 -0.155
(0.296) (0.051) (0.395) (0.068) (0.551) (0.099)

WIC -0.114 -0.104* -0.133 -0.096 -0.486 -0.138
(0.314) (0.060) (0.419) (0.080) (0.584) (0.127)

SNAP × WIC 0.431 0.044 0.420 0.041 0.886 0.085
(0.371) (0.036) (0.496) (0.048) (0.691) (0.070)

Panel 3
Dependent Variables: Total Protein Seafood and Plant Fatty Acids

Foods Proteins

SNAP -0.129 -0.049 0.112 -0.016 -0.930 0.105
(0.247) (0.040) (0.296) (0.053) (0.579) (0.107)

WIC -0.254 -0.032 0.146 -0.038 -0.160 -0.050
(0.262) (0.057) (0.314) (0.063) (0.614) (0.129)

SNAP × WIC 0.342 0.033 -0.027 -0.004 0.317 0.036
(0.310) (0.033) (0.371) (0.037) (0.727) (0.073)

Note: Standard errors in parenthesis and bootstrapped. The analytical sample comes from FoodAPS
and consists of households with a pregnant woman or child under five years old and below 130% of the
federal poverty threshold. The probability of false negatives in SNAP comes from Courtemanche et
al. (2019), a1 = 32.31%, and in WIC comes from Fox & Hokayem (2022), a1 = 41.5%. Regressors not
reported include primary respondent education, ethnicity, race, employment, marital status, age, rural
household residency, indicator and count of children below the age of five, number of children, income
to poverty ratio, primary store distance, whether the primary store is SNAP authorized, whether the
household has any vehicle and whether the household is renting the house. Significance codes: ***
p<0.01, ** p<0.05, * p<0.1
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Appendix Table C2: Impact of Supplemental Nutrition Assistance Program
(SNAP) and Special Supplemental Nutrition Program for Women, Infants, and
Children (WIC) on Healthy Eating - Moderation component using Misclassifica-
tion Probabilities from Validation Data

OLS Adj.LS OLS Adj.LS OLS Adj.LS

Dependent Variables: Refined Grains Sodium Empty Calories

SNAP 0.422 -0.120 0.199 0.076 -1.506 -0.147
(0.621) (0.115) (0.627) (0.108) (0.987) (0.181)

WIC -0.308 0.029 0.311 0.075 -0.667 -0.439**
(0.658) (0.134) (0.664) (0.136) (1.046) (0.222)

SNAP × WIC 0.202 0.017 -0.529 -0.051 1.985 0.195
(0.779) (0.074) (0.787) (0.072) (1.239) (0.127)

Note: Standard errors in parenthesis and bootstrapped. The analytical sample comes from FoodAPS and
consists of households with a pregnant woman or child under five years old and below 130% of the federal
poverty threshold. The probability of false negatives in SNAP comes from Courtemanche et al. (2019),
a1 = 32.31%, and in WIC comes from Fox & Hokayem (2022), a1 = 41.5%. Regressors not reported include
primary respondent education, ethnicity, race, employment, marital status, age, rural household residency,
indicator and count of children below the age of five, number of children, income to poverty ratio, primary
store distance, whether the primary store is SNAP authorized, whether the household has any vehicle and
whether the household is renting the house. Significance codes: *** p<0.01, ** p<0.05, * p<0.1.
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Appendix Table C3: Impact of Supplemental Nutrition Assistance Program
(SNAP) and Special Supplemental Nutrition Program for Women, Infants,
and Children (WIC) on Healthy Eating - Adequacy component using Esti-
mated Misclassification Probabilities

OLS Adj.LS OLS Adj.LS OLS Adj.LS

Panel 1
Dependent Variables: Total Fruit Whole Fruit Total Vegetables

SNAP 0.065 -0.025 -0.331 -0.042 -0.013 0.055
(0.273) (0.053) (0.317) (0.060) (0.255) (0.049)

WIC 0.089 -0.047 -0.475 -0.005 0.084 0.048
(0.289) (0.063) (0.336) (0.069) (0.270) (0.060)

SNAP × WIC 0.044 0.004 0.470 0.055 -0.212 -0.023
(0.342) (0.037) (0.398) (0.043) (0.320) (0.037)

Panel 2
Dependent Variables: Greens and Beans Whole Grains Dairy

SNAP -0.543* 0.011 -0.263 -0.047 -0.184 -0.176
(0.296) (0.059) (0.395) (0.077) (0.551) (0.113)

WIC -0.114 -0.114* -0.133 -0.105 -0.486 -0.151
(0.314) (0.066) (0.419) (0.088) (0.584) (0.139)

SNAP × WIC 0.431 0.050 0.420 0.047 0.886 0.097
(0.371) (0.042) (0.496) (0.056) (0.691) (0.081)

Panel 3
Dependent Variables: Total Protein Seafood and Plant Fatty Acids

Foods Proteins

SNAP -0.129 -0.055 0.112 -0.018 -0.930 0.123
(0.247) (0.046) (0.296) (0.060) (0.579) (0.122)

WIC -0.254 -0.035 0.146 -0.041 -0.160 -0.054
(0.262) (0.062) (0.314) (0.069) (0.614) (0.140)

SNAP × WIC 0.342 0.038 -0.027 -0.005 0.317 0.042
(0.310) (0.038) (0.371) (0.043) (0.727) (0.084)

Note: Standard errors in parenthesis and bootstrapped. The analytical sample comes from FoodAPS
and consists of households with a pregnant woman or child under five years old and below 130% of
the federal poverty threshold. The probability of false negatives in SNAP is a1 = 29.7%, and in WIC
is a2 = 40.1%. The misclassification probabilities are estimated by extending parametric procedure
of Hausman et al. (1998) to bivariate models. Regressors not reported include primary respondent
education, ethnicity, race, employment, marital status, age, rural household residency, indicator and
count of children below the age of five, number of children, income to poverty ratio, primary store
distance, whether the primary store is SNAP authorized, whether the household has any vehicle and
whether the household is renting the house. Significance codes: *** p<0.01, ** p<0.05, * p<0.1
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Appendix Table C4: Impact of Supplemental Nutrition Assistance Program
(SNAP) and Special Supplemental Nutrition Program for Women, Infants, and
Children (WIC) on Healthy Eating - Moderation component using Estimated
Misclassification Probabilities

OLS Adj.LS OLS Adj.LS OLS Adj.LS

Dependent Variables: Refined Grains Sodium Empty Calories

SNAP 0.422 -0.139 0.199 0.086 -1.506 -0.164
(0.621) (0.131) (0.627) (0.123) (0.987) (0.206)

WIC -0.308 0.031 0.311 0.083 -0.667 -0.479**
(0.658) (0.146) (0.664) (0.148) (1.046) (0.242)

SNAP × WIC 0.202 0.020 -0.529 -0.059 1.985 0.225
(0.779) (0.085) (0.787) (0.083) (1.239) (0.146)

Note: Standard errors in parenthesis and bootstrapped. The analytical sample comes from FoodAPS and
consists of households with a pregnant woman or child under five years old and below 130% of the federal
poverty threshold. The probability of false negatives in SNAP is a1 = 29.7%, and in WIC is a2 = 40.1%. The
misclassification probabilities are estimated by extending parametric procedure of Hausman et al. (1998) to
bivariate models. Regressors not reported include primary respondent education, ethnicity, race, employment,
marital status, age, rural household residency, indicator and count of children below the age of five, number
of children, income to poverty ratio, primary store distance, whether the primary store is SNAP authorized,
whether the household has any vehicle and whether the household is renting the house. Significance codes:
*** p<0.01, ** p<0.05, * p<0.1
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